
Short Paper: Blockcheck the Typechain
Sergio Benitez

sbenitez@stanford.edu
Stanford University
Stanford, CA, USA

Jonathan Cogan
jcogan2@stanford.edu
Stanford University
Stanford, CA, USA

Alejandro Russo
russo@chalmers.se

Chalmers University of Technology
Gothenburg, Sweden

Abstract
Recent efforts have sought to design new smart contract program-
ming languages that make writing blockchain programs safer. But
programs on the blockchain are beholden only to the safety prop-
erties enforced by the blockchain itself: even the strictest language-
only properties can be rendered moot on a language-oblivious
blockchain due to inter-contract interactions. Consequently, while
safer languages are a necessity, fully realizing their benefits neces-
sitates a language-aware redesign of the blockchain itself.

To this end, we propose that the blockchain be viewed as a
typechain: a chain of typed programs — not arbitrary blocks — that
are included iff they typecheck against the existing chain. Reaching
consensus, or blockchecking, validates typechecking in a byzantine
fault-tolerant manner. Safety properties traditionally enforced by
a runtime are instead enforced by a type system with the aim of
statically capturing smart contract correctness.

To provide a robust level of safety, we contend that a typechain
must minimally guarantee (1) asset linearity and liveness, (2) physi-
cal resource availability, including CPU and memory, (3) exception-
less execution, or no early termination, (4) protocol conformance,
or adherence to some state machine, and (5) inter-contract safety,
including reentrancy safety. Despite their exacting nature, type-
chains are extensible, allowing for rich libraries that extend the
set of verified properties. We expand on typechain properties and
present examples of real-world bugs they prevent.

CCS Concepts
• Software and its engineering→ Language features; Syntax;
Semantics; Compilers; State based definitions; Domain specific lan-
guages; • Security and privacy→ Software security engineer-
ing; Software and application security.

Keywords
blockchain, security, safety, typechain, programming language, type
system, compiler, smart contract, digital currency

ACM Reference Format:
Sergio Benitez, Jonathan Cogan, and Alejandro Russo. 2020. Short Paper:
Blockcheck the Typechain. In 15th Workshop on Programming Languages
and Analysis for Security (PLAS’20), November 13, 2020, Virtual Event, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3411506.3417600

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PLAS’20, November 13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8092-8/20/11.
https://doi.org/10.1145/3411506.3417600

1 Introduction
Smart contracts are rife with bugs. Invariably, these bugs result
in the loss of dollars, at times measured in the hundreds of mil-
lions. Many of these bugs can be traced back to design decisions,
inconsistencies, and footguns in the contract’s programming lan-
guage [3, 13, 26, 31, 45]. Evidently, we should improve our smart
contract programming facilities.

Recent efforts in industry and academia have sought to design
new, strongly typed smart contract languages to assuage these con-
cerns. While a step forward, we maintain that these efforts include
or lack key language properties that will inevitably lead to similar
bugs. For example, Flint [34], Scilla [35], and Obsidian [8] abort
execution due to runtime faults, a design decision that can lead to
contracts that inadvertently lock funds indefinitely [11, 30, 39]. Nei-
ther Bamboo [44] nor Vyper [40] enforce asset linearity, allowing
for asset loss or duplication as well as inconsistency between the
accounting and presence of value, two common pitfalls [3, 11, 12].
And while Nomos [10] excels at avoiding these prior deficiencies,
it limits inter-contract interactions and is susceptible to deadlocks
when they do occur.

Consequently, we hold that smart contract programming lan-
guages necessitate a type system with properties that specifically
capture smart contract correctness. In particular, typechecking in
such a language should minimally verify:

(1) asset linearity and liveness, to prevent the loss, duplication,
and inaccessibility of value

(2) physical resource availability, including CPU and memory,
to ensure the possibility of executing to completion

(3) exceptionless execution, or lack of unchecked early termina-
tion, to enforce complete error handling

(4) protocol conformance, or adherence to some state machine,
to prevent executing code in unintended states

(5) inter-contract safety, to prevent reentrancy bugs [12] while
allowing safe inter-contract interactions

But a language-only approach is insufficient: failure to consider
inter-contract interactions precludes verification of these desired
properties. For example, to verify a contract exception-free, every
contract it interacts with must be exception-free. Similarly, for any
contract to soundly treat an asset linearly, all contracts must treat
that asset linearly. Thus, realizing strict language properties on the
blockchain requires the blockchain itself to be language-aware.

To this end, we propose a type-driven, language-aware redesign
of the blockchain [29, 42] as a typechain: a chain of typed con-
tracts, state, and transactions — not arbitrary blocks — that are
accepted iff they typecheck against the existing chain. The type-
chain is blockchecked by miners to validate typechecking, verifying,
at minimum, the aforementioned properties.

https://doi.org/10.1145/3411506.3417600
https://doi.org/10.1145/3411506.3417600


While typechains have stronger properties than many strongly
typed languages, they may not sufficiently capture all desired smart-
contract correctness properties. Thus, a typechain must be extensi-
ble, allowing for rich libraries that extend its set of verified proper-
ties. For example, whereas prior work has developed entirely new
blockchains to enable on-chain privacy [5, 7, 9, 16, 20] or verified
off-chain computation [2, 4, 18, 22, 24, 27], a typechain allows this
functionality to be implemented as a library without modification
to its core protocols or language.

In the following section, we expand on typechains, detailing their
desired properties, and present examples of real-word bugs they
preclude (§2). Following, we illustrate how libraries can extend
a typechain’s set of verified properties (§3). Finally, we provide
concluding remarks (§4).

2 Formulating the Typechain
A typechain is an extensible sequence of statically typed programs
ordered and grouped into blocks. To add a block to the chain, it must
be blockchecked: a distributed network of machines must agree that
the program formed by adjoining the new block is well-typed.

Formally speaking, a program 𝑝 = 𝑑 ; 𝑠 on the typechain is a
sequence of typed declarations 𝑑 and closed statements 𝑠 . The
typechain is a sequence of programs1 𝐶𝜏 = 𝑝 where

∀𝑝 ∈ 𝐶𝜏 .blockcheck(𝑝) ⇐⇒ blockcheck(𝐶𝜏 ) .

Newly chained programs — contracts or transactions — must
typecheck individually, and the program formed by the concatena-
tion of existing programs and the new programmust also typecheck.
Thus, successfully blockchecking a new program 𝑝 can be seen as
swapping some existing typechain𝐶𝜏 for a new typechain𝐶 ′

𝜏 where

𝐶 ′
𝜏 = 𝐶𝜏 ;𝑝 if blockcheck(𝐶 ′

𝜏 ) .

From a different yet isomorphic perspective, a typechain is a re-
finement (by one account) or restriction (by another) of a blockchain
in which miners’ core task is to reach consensus on the type safety
of the program resulting from the concatenation of all programs on
the chain. All safety properties, which traditionally arise from the
blockchain’s runtime [42], arise instead from the type system. This
includes asset accounting, proof and ownership of assets, and the
ability, financial or otherwise, to compute or store on the blockchain.
The deployment of a contract or execution of a transaction is pre-
conditioned on these properties.

A typechain’s type system is thus stronger than that of many con-
ventional strongly typed languages. Minimally, it must guarantee
the properties enumerated in §1. We emphasize that, while helpful,
a subset of these properties is not sufficient; a single omission is
enough to admit the very class of nefarious, money-squandering
bugs we wish to avoid. Conversely, this minimal set of properties
is necessarily insufficient to capture all desirable correctness prop-
erties, so typechains are extensible, allowing for new, arbitrary
properties to be admitted and enforced (§3).

In the following sections, we detail the properties in §1, providing
examples of bugs that eachwould prevent. Our examples are written
in pseudocode resembling Rust [33, 36].

1Note that𝐶𝜏 = 𝑝 = 𝑑 ; 𝑠 = 𝑝 , so the typechain is itself a program.

1 impl Auction when open {
2 fn bid(self, amount: Money) {
3 if self.should_close() {
4 close self;
5 } else if amount <= self.max_bid {
6 amount.return_to_sender();
7 } else {
8 self.max_bid = amount;
9 }
10 }
11 }

Figure 1: A buggy Auction contract with a bid()method.

Asset Linearity and Liveness
A blockchain is primarily concerned with managing and operating
on assets: currency, arbitrary items, tokens (sub-currencies), and so
on. As in the real world, correctness demands that assets are never
lost nor duplicated.

Unfortunately, this property is difficult to maintain in exist-
ing blockchain languages [3, 12, 13], where assets are trivially
reusable and dispensable. As an example of what can go wrong,
consider the bid() method in Figure 1. The intent is that, while
the auction is open, bids of amount can be placed by invoking
Auction::bid(amount). The sender becomes the highest bidder
if their bid is the highest thus far. Otherwise, the bid is returned.
Can you spot the problem(s)?

The first branch, which closes the auction when necessary, fails
to return the unconsidered bid amount to its bidder. The third
branch, which runs if amount is the highest bid, overwrites max_bid
without returning this previous highest bid to its bidder. In both
cases, value is irreversibly lost.

A fix is to call the appropriate return_to_sender() in each
branch. A language with linear assets would statically enforce the
existence of such calls. Linear types [17, 41] provide a mechanism:
encode assets as linear types, enforcing their use exactly once, pre-
venting loss or duplication.

However, linearity alone is insufficient: typechains must also
enjoy asset liveness, or the guarantee that contracts are always in
a state that allows their assets to be transferred. Failure to enjoy
asset liveness can result in assets that are locked and rendered
unusable. One famous instance of such a bug led to the loss of ~200
million USD [32], though many other instances have occurred in
the wild [3, 11, 13].

Physical Resource Availability
To protect miners from executing runaway transactions, themselves
arbitrary programs, blockchains enforce limits on computational re-
sources including the CPU and memory. Overstepping transactions
are halted or partially reverted.

This behavior can lead to unexpected consequences, especially
when state is only partially reverted [11, 23, 39]. As an example, we
consider again bid() in Figure 1. In languages like Solidity [15],
send calls like return_to_sender() can fail if such a call would
exhaust the stack limit or if other alloted computational resources
would not suffice. If the call fails, a false value is returned [3, 15].
Unfortunately, contracts often ignore this value, leading to a class



of bugs known as unchecked send [3, 45]. An unchecked send in the
bid() method, for example, would result in the Auction contract
inadvertently holding more funds than desired.

Contracts may also settle in a state where execution without
exhausting resources, and thus execution at all, is impossible [30].
Such a contract has its funds locked forever. This entails that asset
liveness necessitates resource availability. As an example, Govern-
Mental’s only asset extraction method iterated over an array that
grew too large to scan within the alloted limit; its funds were locked
without recourse [39].

A typechain statically guarantees the availability of physical
resources for all possible executions of a contract. Mechanically, its
type system produces concrete, input-independent resource usage
upper bounds. Programs exceeding limits fail to blockcheck. While
languages like Nomos [10] and Scilla [35] demonstrate feasibility
of such a guarantee, a challenge remains in finding mechanisms
that are developer-friendly.

Exceptionless Execution
In addition to resource exhaustion, early termination in existing
blockchains can arise due to arbitrary unchecked exceptions [25,
38]. In Solidity, contracts can arbitrarily throw exceptions, and in
Solidity, Flint, and Obsidian, exceptions can arise from incorrect
logical operations such as out-of-bounds indexing and division by
zero. While their sources of early termination differ, unchecked
exceptions and resource exhaustion admit similar issues. Thus, a
typechain must either guarantee that all possible exceptions are
checked or prohibit exceptional operations entirely, perhaps by
leveraging dependent types [43] or SMT solvers [1].

Protocol Conformance
Smart contracts typically follow a protocol: a predefined series of
steps conditioned on the contract’s state. For instance, Auction in
Figure 1 allows a bid only when it is open.

Existing blockchains require programmers to enforce protocols
in an ad-hoc, unstructured, and dynamic manner [14]. Often, they
advocate for throwing exceptions when expected conditions fail to
hold, violating exceptionless execution. Of course, mistakes abound
in practice [13, 25, 38]. Typechains, instead, allow programmers to
directly encode a contract’s protocol; conformance to the protocol
is then statically enforced by the type system.

Recent efforts have recognized the importance of protocol con-
formance: Obsidian [8], Flint [34], and Nomos [10] all statically
enforce protocols, the former two by leveraging typestate [37] and
the latter by leveraging session types [19].

Inter-Contract Safety
Blockchains like Ethereum allow smart contracts to interact through
mutual method invocation. While largely innocuous, interaction
can lead to vulnerabilities in both the caller and callee. For instance,
given a stack frame limit of 𝑘 frames2, a caller can coerce a callee
into exhausting its frame limit by making 𝑘 − 2 nested calls prior to
invoking the target callee. When the callee makes a call of its own,
it will exceed the frame limit and an exception will be thrown. As
discussed, if unexpected, such exceptions can lead to vulnerabilities.
2In Ethereum, 𝑘 = 1024.

Callers are inherently vulnerable. Since a callee can react arbi-
trarily, it may re-invoke the caller. If the caller expected logically
atomic execution, its re-execution may result in inconsistent state
which in turn may lead to vulnerabilities. Such vulnerabilities are
termed reentrancy vulnerabilities.

The issue is further exacerbated by the ability for contracts to in-
teract unknowingly. In Ethereum, for instance, asset-transfer calls,
such as return_to_sender() in Figure 1, invoke a method on the
recipient’s contract. Infamously, ~40 million USD was stolen from
TheDAO via a reentrancy attack resulting from such a call [12]. The
attack was considered so unacceptable that Ethereum forked, mu-
tating the purportedly immutable blockchain in order to make the
stolen funds recoverable [28]. The particularly vile nature of reen-
trancy vulnerabilities has led to the development of myriad tools
and methods to detect them [6, 21, 25, 30, 38]. These approaches
require manual application by the programmer, and to date, none
is both sound and complete.

A typechain enables safe inter-contract communication by guar-
anteeing that local contract reasoning extends globally. This is
facilitated by the properties enumerated thus far. For example, ex-
ceptionless execution and resource availability immediately obviate
caller-originated resource exhaustion attacks, while asset linear-
ity ensures that inter-contract interactions, even reentrant ones,
cannot render asset accounting logically inconsistent, the crux of
TheDAO attack. In addition, a typechain’s type system should be
statically aware of all inter-contract interactions and conservatively
forbid reentrant calls, perhaps by leveraging session types [19] or
communicating automata [35].

3 Extending the Typechain
A typechain’s properties are necessary but insufficient: a smart con-
tract is correct only if these properties hold, but desired correctness
properties may be absent.

To compensate, typechains are malleable: a typechain’s type
system is extensible (§3.1) and allows for rich libraries that leverage
Curry-Howard isomorphisms to expose types that act as proof
witnesses (§3.2). Thus, a typechain’s type system must at once be
strict enough to allow enforcing arbitrary correctness properties
while permissive enough to host expressive libraries.

3.1 Type System Strengthening
Smart contracts can extend the set of properties verified by a type-
chain via extensions that strengthen the typechain’s type system.
Extensions run during blockchecking and apply to the contract
that deployed the extension as well as its dependents. Properties
checked by extensions are guaranteed to hold uniformly across the
entire typechain. Any property that can be expressed as a finite
static analysis can be implemented as an extension.

Concretely, extensions are type systems that are required to be
strengthenings of the typechain’s type system. We say that a type
system defined by the relation Γ′ ⊢′ 𝑒 : 𝜏 is a strengthening of a
type system defined by Γ ⊢ 𝑒 : 𝜏 iff Γ′ ⊢′ 𝑒 : 𝜏 =⇒ Γ ⊢ 𝑒 : 𝜏 .

We call Γ′ ⊢′ 𝑒 : 𝜏 the strengthened type system; Γ ⊢ 𝑒 : 𝜏 is the
original type system. A strengthened type system admits monoton-
ically fewer programs than the original. In other words, it reduces



the set of programs that typecheck. Critically, a strengthening can-
not weaken a type system: a property that holds in the original
must hold after strengthening. Consequently, extensions cannot
deliberately or accidentally weaken a typechain’s properties.

Example: Global Singleton

As an example of a property verifiable via extensions, consider the
global singleton: a type with at most one instance in a program. We
would like to implement a type, Singleton, external to the type-
chain, that is guaranteed to be a global singleton in the typechain.
In other words, we would like to verify that at most one instance
of type Singleton is ever constructed in the typechain.

To begin, the Singleton type is declared as the usual container
generic over an embedded type T:

1 struct Singleton<T>(T);

We define a flow-sensitive strengthening of Γ ⊢ 𝑒 : 𝜏 as

Γ ⊢ 𝑒 : 𝜏 ¬singleton(𝜏)
0

Γ,Δ ⊢Δ 𝑒 : 𝜏 ⇒ Δ

Γ,Δ ⊢Δ 𝑣 : 𝜏 ⇒ Δ′ 𝜏 ∉ Δ′
1

Γ,Δ′ ⊢Δ 𝑣 : 𝜏 ⇒ Δ′ ∪ {𝜏} ,

where singleton(𝜏) is true when 𝜏 = Singleton<C> for some
concrete type C, and 𝑣 is a value. Rule 0, to the left, ensures that
all non-Singleton types typecheck as usual. Rule 1, to the right,
asserts that a Singleton instance can only arise from one value in
the program. Assuming instances must be constructed as values 𝑣 ,
this extension guarantees the global singleton property we sought.

3.2 Type Libraries
While many existing type systems are readily leveraged to codify
correctness properties, the practice is notably absent in blockchain
programming, owing to weaker type systems. Typechains nullify
this dichotomy by being flexible yet strict enough to allow such
properties to be codified in libraries.

Example: Timing

We consider time-based properties as an example, where correctness
is specified as a function of time. A typechain should allow the
implementation of a library contract type Timed<C>, generic over
a contract C, that automatically and indelibly enforces centrally
declared, time-based properties. Leveraging such a library for Auc
tion in Figure 1 might resemble:

1 impl Timing for Auction {
2 fn check(self, time: Time) {
3 if self.should_close(time) close self;
4 }
5 }

This Timing implementation specifies time-based properties for
Auction: if an auction should_close(), it is, in fact, closed. By
deploying a Timed<Auction> in place of an Auction, the library
would automatically enforce this property. Consequently, Auction
can be written without further calls to self.should_close(). In
particular, methods implemented on open contracts, such as Auc
tion::bid(), can rely on being called only when the auction is
logically open without further confirmation.

4 Concluding Remarks
A typechain is a sequence of typed programs blockchecked by a
distributed network of machines that verify their well-typedness.
When the type system ensures key safety properties, bugs plagu-
ing smart contracts cease to be. These properties must minimally
include (1) asset linearity and liveness, (2) physical resource avail-
ability, (3) exceptionless execution, (4) protocol conformance, and
(5) inter-contract safety. Existing work does not go far enough, en-
joying only a subset of these properties. Unfortunately, a single
omission permits the very bugs we attempt to evade.

Verification of these properties must holistically consider all pro-
grams on the chain: a single errant contract thwarts soundness.
Thus, unlike verification applied to individual contracts, typechains
enjoin safety properties universally, requiring them to hold of all
contracts. Still, a typechain may not sufficiently capture all de-
sired correctness properties, so typechains are extensible, allowing
user-defined properties to be verified during blockchecking. By
blockchecking safety and user-defined correctness properties, the
ambit of verification is approached.

We believe typechains stand to fundamentally improve the safety
and correctness of smart contracts and are actively working on the
design and implementation of a typechain.

Acknowledgments
Thanks to Dan Boneh, Fraser Brown, and the anonymous reviewers
for their invaluable feedback and suggestions.

References
[1] Leonardo Alt and Christian Reitwiessner. 2018. SMT-Based Verification of Solidity

Smart Contracts. In Leveraging Applications of Formal Methods, Verification and
Validation. Industrial Practice, Tiziana Margaria and Bernhard Steffen (Eds.).
Springer International Publishing, Cham, 376–388.

[2] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek. 2014. Secure
Multiparty Computations on Bitcoin. In 2014 IEEE Symposium on Security and
Privacy. 443–458.

[3] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A Survey of Attacks
on Ethereum Smart Contracts SoK. In Proceedings of the 6th International Confer-
ence on Principles of Security and Trust - Volume 10204. Springer-Verlag, Berlin,
Heidelberg, 164–186. https://doi.org/10.1007/978-3-662-54455-6_8

[4] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and
Howard Wu. 2018. Zexe: Enabling Decentralized Private Computation. IACR
Cryptol. ePrint Arch. 2018 (2018), 962. https://eprint.iacr.org/2018/962

[5] Mic Bowman, Andrea Miele, Michael Steiner, and Bruno Vavala. 2018. Private
Data Objects: an Overview. CoRR abs/1807.05686 (2018). arXiv:1807.05686
http://arxiv.org/abs/1807.05686

[6] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gauthier, Vincent
Gramoli, Ralph Holz, and Bernhard Scholz. 2018. Vandal: A Scalable Security
Analysis Framework for Smart Contracts. arXiv:1809.03981 [cs.PL]

[7] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah
Johnson, Ari Juels, Andrew Miller, and Dawn Song. 2019. Ekiden: A Platform
for Confidentiality-Preserving, Trustworthy, and Performant Smart Contracts.
2019 IEEE European Symposium on Security and Privacy (EuroS&P) (Jun 2019).
https://doi.org/10.1109/eurosp.2019.00023

[8] Michael Coblenz, Reed Oei, Tyler Etzel, Paulette Koronkevich, Miles Baker,
Yannick Bloem, Brad A. Myers, Joshua Sunshine, and Jonathan Aldrich.
2019. Obsidian: Typestate and Assets for Safer Blockchain Programming.
arXiv:1909.03523 [cs.PL]

[9] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptol.
ePrint Arch. 2016 (2016), 86. http://eprint.iacr.org/2016/086

[10] Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani
Santurkar. 2019. Resource-Aware Session Types for Digital Contracts.
arXiv:1902.06056 [cs.PL]

[11] David Gerard. 2017. Attack of the 50 Foot Blockchain. David Gerard, Chapter 10.
[12] David Siegel. 2016. Understanding The DAO Attack . https://www.coindesk.com/

understanding-dao-hack-journalists

https://doi.org/10.1007/978-3-662-54455-6_8
https://eprint.iacr.org/2018/962
https://arxiv.org/abs/1807.05686
http://arxiv.org/abs/1807.05686
https://arxiv.org/abs/1809.03981
https://doi.org/10.1109/eurosp.2019.00023
https://arxiv.org/abs/1909.03523
http://eprint.iacr.org/2016/086
https://arxiv.org/abs/1902.06056
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists


[13] Kevin Delmolino, Mitchell Arnett, Ahmed E. Kosba, Andrew Miller, and Elaine
Shi. 2015. Step by Step Towards Creating a Safe Smart Contract: Lessons and
Insights from a Cryptocurrency Lab. IACR Cryptol. ePrint Arch. 2015 (2015), 460.
http://eprint.iacr.org/2015/460

[14] Ethereum Project Developers. 2020. Solidity - Common Patterns - State Ma-
chine. https://solidity.readthedocs.io/en/v0.6.10/common-patterns.html#state-
machine

[15] Ethereum Project Developers. 2020. Solidity - Solidity Documentation. https:
//solidity.readthedocs.io/

[16] Hisham S. Galal and Amr M. Youssef. 2019. Trustee: Full Privacy Preserving Vick-
rey Auction on top of Ethereum. CoRR abs/1905.06280 (2019). arXiv:1905.06280
http://arxiv.org/abs/1905.06280

[17] Jean-Yves Girard. 1987. Linear Logic. Theor. Comput. Sci. 50, 1 (Jan. 1987), 1–102.
https://doi.org/10.1016/0304-3975(87)90045-4

[18] S Goldwasser, S Micali, and C Rackoff. 1985. The Knowledge Complexity
of Interactive Proof-Systems. In Proceedings of the Seventeenth Annual ACM
Symposium on Theory of Computing (Providence, Rhode Island, USA) (STOC
’85). Association for Computing Machinery, New York, NY, USA, 291–304.
https://doi.org/10.1145/22145.22178

[19] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. 1998. Language
Primitives and Type Discipline for Structured Communication-Based Program-
ming. In Programming Languages and Systems - ESOP’98, 7th European Symposium
on Programming, Held as Part of the European Joint Conferences on the Theory
and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998,
Proceedings (Lecture Notes in Computer Science), Chris Hankin (Ed.), Vol. 1381.
Springer, 122–138. https://doi.org/10.1007/BFb0053567

[20] Harry A. Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew Weinberg, and
Edward W. Felten. 2018. Arbitrum: Scalable, private smart contracts. In 27th
USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August
15-17, 2018, William Enck and Adrienne Porter Felt (Eds.). USENIX Association,
1353–1370. https://www.usenix.org/conference/usenixsecurity18/presentation/
kalodner

[21] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February
18-21, 2018. The Internet Society. http://wp.internetsociety.org/ndss/wp-content/
uploads/sites/25/2018/02/ndss2018_09-1_Kalra_paper.pdf

[22] Gabriel Kaptchuk, Matthew Green, and Ian Miers. 2019. Giving State
to the Stateless: Augmenting Trustworthy Computation with Ledgers. In
26th Annual Network and Distributed System Security Symposium, NDSS
2019, San Diego, California, USA, February 24-27, 2019. The Internet Soci-
ety. https://www.ndss-symposium.org/ndss-paper/giving-state-to-the-stateless-
augmenting-trustworthy-computation-with-ledgers/

[23] King of the Ether Throne Developers. 2016. King of the Ether Throne Post-Mortem
Investigation. http://www.kingoftheether.com/postmortem.html

[24] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos
Papamanthou. 2015. Hawk: The Blockchain Model of Cryptography and
Privacy-Preserving Smart Contracts. IACR Cryptol. ePrint Arch. 2015 (2015),
675. http://eprint.iacr.org/2015/675

[25] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). Association for Computing Machinery, New York, NY, USA, 254–269. https:
//doi.org/10.1145/2976749.2978309

[26] Martin Holst Swende. 2015. An Ethereum Roulette. https://swende.se/blog/
Breaking_the_house.html

[27] Izaak Meckler and Evan Shapiro. 2018. Coda: Decentralized cryptocurrency at
scale. (2018).

[28] Michael del Castillo. 2016. Ethereum Executes Blockchain Hard Fork to Return
DAO Funds. https://www.coindesk.com/ethereum-executes-blockchain-hard-
fork-return-dao-investor-funds

[29] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Technical
Report.

[30] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. In Proceedings
of the 34th Annual Computer Security Applications Conference (San Juan, PR, USA)
(ACSAC ’18). Association for ComputingMachinery, New York, NY, USA, 653–663.
https://doi.org/10.1145/3274694.3274743

[31] Parity Technologies. 2017. A Postmortem on the Parity Multi-Sig Library Self-
Destruct. https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-
self-destruct/

[32] Parity Technologies. 2017. The Multi-sig Hack: A Postmortem. https://www.
parity.io/the-multi-sig-hack-a-postmortem/

[33] Rust Project Developers. 2020. Rust Programming Language. https://www.rust-
lang.org

[34] Franklin Schrans, Daniel Hails, Alexander Harkness, Sophia Drossopoulou, and
Susan Eisenbach. 2019. Flint for Safer Smart Contracts. CoRR abs/1904.06534
(2019). arXiv:1904.06534 http://arxiv.org/abs/1904.06534

[35] Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov,
and Ken Chan Guan Hao. 2019. Safer Smart Contract Programming with Scilla.
Proc. ACM Program. Lang. 3, OOPSLA, Article 185 (Oct. 2019), 30 pages. https:
//doi.org/10.1145/3360611

[36] Steve Klabnik and Carol Nichols, with contributions from the Rust Community.
2020. The Rust Programming Language. https://doc.rust-lang.org/book/#the-
rust-programming-language

[37] Robert E. Strom and Shaula Yemini. 1986. Typestate: A Programming Language
Concept for Enhancing Software Reliability. IEEE Trans. Software Eng. 12, 1 (1986),
157–171. https://doi.org/10.1109/TSE.1986.6312929

[38] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian
Bünzli, and Martin Vechev. 2018. Securify: Practical Security Analysis of Smart
Contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (Toronto, Canada) (CCS ’18). Association for Computing
Machinery, New York, NY, USA, 67–82. https://doi.org/10.1145/3243734.3243780

[39] u/ethererik. 2016. GovernMental’s 1100 ETH jackpot payout is stuck because
it uses too much gas. https://www.reddit.com/r/ethereum/comments/4ghzhv/
governmentals_1100_eth_jackpot_payout_is_stuck/

[40] Vitalik Buterin. 2020. Vyper: a contract-oriented, pythonic programming language
that targets the Ethereum Virtual Machine (EVM). https://vyper.readthedocs.io/
en/latest/

[41] Philip Wadler. 1990. Linear Types can Change the World!. In Programming
concepts and methods: Proceedings of the IFIP Working Group 2.2, 2.3 Working
Conference on Programming Concepts and Methods, Sea of Galilee, Israel, 2-5 April,
1990, Manfred Broy (Ed.). North-Holland, 561.

[42] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.

[43] Hongwei Xi and Frank Pfenning. 1999. Dependent Types in Practical Pro-
gramming. In POPL ’99, Proceedings of the 26th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, San Antonio, TX, USA, Jan-
uary 20-22, 1999, Andrew W. Appel and Alex Aiken (Eds.). ACM, 214–227.
https://doi.org/10.1145/292540.292560

[44] Yoichi Hirai. 2020. Bamboo: a language for morphing smart contracts. https:
//github.com/CornellBlockchain/bamboo

[45] Zikai Alex Wen and Andrew Miller. 2016. Scanning Live Ethereum Contracts for
the "Unchecked-Send" Bug. https://hackingdistributed.com/2016/06/16/scanning-
live-ethereum-contracts-for-bugs/

http://eprint.iacr.org/2015/460
https://solidity.readthedocs.io/en/v0.6.10/common-patterns.html#state-machine
https://solidity.readthedocs.io/en/v0.6.10/common-patterns.html#state-machine
https://solidity.readthedocs.io/
https://solidity.readthedocs.io/
https://arxiv.org/abs/1905.06280
http://arxiv.org/abs/1905.06280
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/BFb0053567
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-1_Kalra_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-1_Kalra_paper.pdf
https://www.ndss-symposium.org/ndss-paper/giving-state-to-the-stateless-augmenting-trustworthy-computation-with-ledgers/
https://www.ndss-symposium.org/ndss-paper/giving-state-to-the-stateless-augmenting-trustworthy-computation-with-ledgers/
http://www.kingoftheether.com/postmortem.html
http://eprint.iacr.org/2015/675
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
https://swende.se/blog/Breaking_the_house.html
https://swende.se/blog/Breaking_the_house.html
https://www.coindesk.com/ethereum-executes-blockchain-hard-fork-return-dao-investor-funds
https://www.coindesk.com/ethereum-executes-blockchain-hard-fork-return-dao-investor-funds
https://doi.org/10.1145/3274694.3274743
https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://www.parity.io/the-multi-sig-hack-a-postmortem/
https://www.parity.io/the-multi-sig-hack-a-postmortem/
https://www.rust-lang.org
https://www.rust-lang.org
https://arxiv.org/abs/1904.06534
http://arxiv.org/abs/1904.06534
https://doi.org/10.1145/3360611
https://doi.org/10.1145/3360611
https://doc.rust-lang.org/book/#the-rust-programming-language
https://doc.rust-lang.org/book/#the-rust-programming-language
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1145/3243734.3243780
https://www.reddit.com/r/ethereum/comments/4ghzhv/governmentals_1100_eth_jackpot_payout_is_stuck/
https://www.reddit.com/r/ethereum/comments/4ghzhv/governmentals_1100_eth_jackpot_payout_is_stuck/
https://vyper.readthedocs.io/en/latest/
https://vyper.readthedocs.io/en/latest/
https://doi.org/10.1145/292540.292560
https://github.com/CornellBlockchain/bamboo
https://github.com/CornellBlockchain/bamboo
https://hackingdistributed.com/2016/06/16/scanning-live-ethereum-contracts-for-bugs/
https://hackingdistributed.com/2016/06/16/scanning-live-ethereum-contracts-for-bugs/

	Abstract
	1 Introduction
	2 Formulating the Typechain
	3 Extending the Typechain
	3.1 Type System Strengthening
	3.2 Type Libraries

	4 Concluding Remarks
	Acknowledgments
	References

